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RAY REPRESENTATIONS OF POINT GROUPS AND THE
IRREDUCIBLE REPRESENTATIONS OF SPACE GROUPS
AND DOUBLE SPACE GROUPS

By A. C. HURLEY

C.S.L.R.O., Dwision of Chemical Physics, Chemical Research Laboratories,
Melbourne, Australia

(Communicated by C. A. Coulson, F.R.S.—Received 26 April 1965)
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The theory of the ray representations of a finite group is summarized and full matrix ray
representations are derived and tabulated for all thirty-two point groups. It is shown that any
irreducible representation of any of the 230 space groups and of the corresponding double groups
may be obtained quickly and easily from these ray representations of the point groups. The most
complex cases which arise, namely points of high symmetry on the surface of the Brillouin zone for
the regular holohedric space groups, O} ... 0}9, are treated explicitly. The relation of the present
work to the recent treatments of Slater and Kovalev is discussed.

1. INTRODUCTION

For some applications of group theory to chemical and physical problems one needs
explicit matrices for the various irreducible representations ; the characters of the representa-
tions are not sufficient. For example, projection operators constructed from the full
matrices can be used to resolve an arbitrary function into components, each of which
transforms as a partner in a particular irreducible representation (McWeeny 1963 ; Slater
1963). This transformation is useful not only in general theoretical discussions but also in
numerical calculations for specific systems since it simplifies the secular equations and other
key relations.

Although the characters of the representations suffice for an analysis of degeneracies and
selection rules, and of the way in which these change under various perturbations, they are
not very helpful in simplifying numerical calculations. This is because the resolution of an
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2 A. C. HURLEY

arbitrary function provided by a character projection operator may be so incomplete as to
be almost useless. An extreme case occurs for certain representations of space groups which
have non-zero characters only for the identity rotation. Clearly a projection operator
constructed from such a character is valueless.

Explicit matrices are available for all irreducible representations of the thirty-two point
groups (McWeeny 1963; Slater 1963). Slater (1965) has recently derived full matrix
representations for a number of space groups. In the present paper we present tables which,
in conjunction with McWeeny’s (1963) tables for the point groups, give full matrix
representations of all space groups and double space groups.

The method employed is that of ray representations introduced by Weyl (1931) and
developed for application to the space groups by Déring (1959). This appears to the author
to be the most efficient way of obtaining matrix representations for all 230 space groups
without resorting to tables of inordinate length.

When this work was completed attention was drawn (J. P. Dahl, private communication)
to a publication by Kovalev (1961) which lists, apart from a gauge transformation, explicit
matrices for all irreducible representations of all space groups and double space groups.
The relationship of Kovalev’s method and tables to those of the present paper is discussed
in §13.

2. RAY REPRESENTATIONS OF FINITE GROUPS

DeFINITION. A ray (or multiplier) representation I'(a,) of a finite group G with elements

a; = ¢, dy...a, is a mapping of the elements of G onto a set of non-singular matrices 1'(a,)
a,~1'(a,),

which satisfies the conditions  I'(a,,) I'(a,) = A(a,, a,) I'(a,,a,) (2-1)

for all elements q,,, a, of G.

In equation (2-1) A(a,,a,) is a complex number, which is assumed to be non-zero for
all a,,, a,. The set of numbers A(a,, a,) is called the factor system of the ray representation.

The vector representations of G are ray representations with the trivial factor system
Aa,,a,) = 1 for all a,, a, of G.

The terms irreducible and equivalent have the same meaning for ray representations as
for vector representations. Equivalent ray representations necessarily have the same factor
system.

Let I'®(q,), I'®(a,), ..., ®(a,) be a complete set of inequivalent irreducible unitary ray
representations of G, each with the same factor system A(q,,, ,). The basic orthogonality
relation for irreducible vector representations is valid also for these ray representations:

3 (T(a,)* T (a,) = 8,885 (22)
an€G o
where [, is the dimensionality of the ray representation I'®,

Putting 7 = j, £ = [ in equation (2-2) and summing over ¢ and £ we obtain the ortho-

gonality relation for the characters

2 (X9(a,))* xP(a,) = gdups (2-3)

an€G

l(!
where X(a) = $T(a,).
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RAY REPRESENTATIONS OF POINT GROUPS 3

Again, as for vector representations, the number of times 7, that the irreducible ray
representation '@ is contained in a reducible representation I' with character y (and the
same factor system A(a,,, a,) as I'®) is given by the equation

M= S (X9(a)* x(e). (2:4)
g aneG

By considering the regular representation we obtain the useful relation

N
2 =g (2+5)
a=1

The derivation of these results is exactly parallel to that for vector representations (Weyl
1931; Wigner 1959). There are two reasons why these results apply without change to ray
representations:
(i) Schur’s lemma applies to any collection of irreducible matrices and hence to ray as
well as vector representations.
(i1) The complex conjugation in equations (2-2), (2-3) and (2'4) leads to cancellation of
the elements A(a,, a,) of the factor system from these equations.f}
When Kronecker products are formed from ray representations attention must be paid
to changes in the factor system. If I'j(a,), I',(a,) are ray representations of G with factor

systems A,(a,, a,), A,(a,,, a,) respectively, then the Kronecker product
P(an) = Pl (an) X I-‘2<an)
forms a ray representation of G with the factor system

/l(d a ) = /11 (amD an) /12(am3 an)’

m>'n

Two different factor systems A(a,, a,),1'(a,,a,) are said to be associated if there exists
a set of numbers x(a,) such that

Ma,,a =ﬂ~———~(am)ﬂ(£’52/l Gy G- v2°6
( el %) Ay ) (2:6)
The corresponding transformation of ray representations I'(a,), I'(a,) with factor

systems A, A is called a gauge transformation (Weyl 1931),

I(a,) = u(a,) I(a,). (2:7)

Just as similarity transformations may be used to relate all irreducible vector representa-
tions of G to a finite set of inequivalent ones, so gauge transformations lead to a finite set of
non-associated factor systems. Two ray representations related by any combination of
similarity and gauge transformations are said to be projective equivalent or p-equivalent.
As Weyl shows the non-associated factor systems of any group may be obtained from the

t This cancellation does not occur for certain alternative forms of the orthogonality relations for vector
representations. For example, the relation

2 xN(a,) X7 (a;1) = gBup,
an
valid for vector representations, becomes for ray representations

2 [Aay, a7')]71 X (a,) X7 (a7!) = g04p.
an

However, we shall not have occasion to use these alternative forms.
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4 A. C. HURLEY

group structure. In particular he shows that a ray representation of any cyclic group is
always associated with a vector representation; that is, for any possible factor system

A(a,,, a,) we can find numbers x(a,) such that

V(o a,) =00 B 0 g, ) = 1. (2:8)
There are, therefore, no multidimensional irreducible ray representations of cyclic groups.
There are, however, some Abelian groups which do have multidimensional irreducible ray
representations.
3. RAY REPRESENTATIONS OF POINT GROUPS

We have seen in § 2 that for certain point groups the introduction of ray representations
leads to nothing essentially new; for these groups any possible representation is associated
with an ordinary vector representation.

For other point groups this is not the case; there are ray representations which cannot be
associated with vector representations. These groups have been considered by Doéring
(1959), who finds that among the 32 point groups there are 12 non-isomorphic groups which
possess non-trivial ray representations. Déring lists the non-associated factor systems for
these 12 groups and the characters of the irreducible ray representations.

Déring’s tables have been expanded to give full matrix representations. These expanded
tables A1 to A 11 are given in the appendix to this paper.

4. SPACE GROUPS

The general theory of space groups and their representations has been reviewed by
Koster (1957) and we follow his notation and conventions with minor exceptions, which
are stated explicitly.

A space group G is an infinite discrete group of point transformations of the form {a|t}.
The transform X’ of a general point (vector) X by {a|t} is defined by the equation

x' = {a|t}x = ax+t. (4-1)
In a fixed Cartesian coordinate system X', X and t are represented by 3 x 1 column
matrices and a is represented by a real orthogonal 3 x 83 matrix. The vector t is called the
translational part of the transformation (4-1) and « is called the rotational part.
The product of two elements {a|t}, {#|s} of G is defined by transforming a general
vector X successively by {6 | s} and {a|t},

(felt} {o]s}) x = {a[ 6} ({&|8}%). (4-2)
From equation (4-2) we obtain the product rule
{a|t} {b|s} = {ab]|as+t}. (4-3)

As Koster shows, any group of transformations of the form (4:1) possesses an invariant
subgroup J of pure translations {¢|t}, where ¢ is the identity rotation; space groups are
characterized by the form of this subgroup .7°. All the pure translations of a space group,
called primitive translations, are of the form

{elt} = {|R,}, (4-4)

where R, = nt, +n,t,+nsts.
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RAY REPRESENTATIONS OF POINT GROUPS 5

Here n,, n, and ny are integers and t,, t,, t; are three linearly independent translations,
called basic primitive translations. The periodic collection of points generated by the
vectors R, is called the lattice. This lattice must be one of the 14 possible Bravais lattices
listed by Koster, who also gives the symmetrical unit cell for each lattice.

The rotational parts ¢; (i =1, ...,g) of the transformations (4-1) constitute one of the
32 point groups. This point group G,, which for a given space group G must leave the
symmetrical unit cell invariant, is not, in general, a subgroup of G. However, G, is always
isomorphic to the factor group G/7 .

All elements of G which have a rotational part g; can be written in the form

{a;| 6} = {a;| v(@) +R,} = {¢| R} {&;]| v(a)}, (4:5)

where R, runs over all primitive translations. Here v(g,) is either zero or a non-primitive
translation, which, for each g, is usually chosen so that the length of v(g;) is as small as
possible; v(a,) will be referred to as the (minimal) non-primitive translation associated
with the rotation g, Motions corresponding to non-primitive translations followed by
a proper or improper rotation correspond to glide planes and screw axes in a crystal.

We see then that a unique vector v(g,), which may be zero, is associated with each element
a; of the point group. We always associate a primitive translation R, with the identity
rotation a = ¢ so that v(e) = 0.

Space groups may be divided into two types on the basis of the vectors v(g;). The first are
those for which v(g;) = 0 for all 4, These are the so-called symmorphic space groups of
which there are 73. For each element ¢, of the point group G, there is an element {g;| 0} in
the symmorphic space group G. From equation (4-2) we have

{a;] 0} {aj |0} = {aiaj | 0},

so that those elements of G of the form {¢;| 0} constitute a subgroup isomorphic with G,.
Thus we can characterize the symmorphic space groups by saying that they contain the
entire point group as a subgroup.

In the remaining 157 space groups, v(¢;) cannot be taken as zero for all ¢; simultaneously.
For a non-symmorphic space group G of this type, the set of elements

{e|v(@)} (=1,..,g) (4:6)

does not constitute a group. This set of elements, which will be referred to as the reduced
set {G,} of the space group G, plays an important role in the derivation of the representations.
The element (4-6) of the reduced set will sometimes be abbreviated to {g;}. We note that
the translational part of the transformation {4;} is not necessarily zero.

The product of two elements {a;| v(,)}, {a;| v(4;)} of the reduced set {G} may be found

from equation {4-3}, {ai l V(a,-)} {dj ‘ V(aj)} — {d,-dj | a,-V(aj) +V(ai)}' (4-7)
Now from equation (4-5) we must have
4;v(a;) +v(a;) = v(a,4;) + R, (5,7 ) (4-8)

where R, (7,7 ) is a primitive translation depending on 7 and j.
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6 A. C. HURLEY
Therefore 4| V(@) i | v(4))} = {a;4; | V(4,0)) + R, (i,7)}
= {e[R,(0))} g | v(@ia)), (+9)

or in the abbreviated notation
{a} {aj} = {e|R,(5,))} {didj}- (4-10)

The fact that the reduced set {G,} is not, in general, a group is apparent from equation
(4:-10). Only if R (z,7) happens to be zero will the product of two elements in {G,} give
a result in {G,}; otherwise the result will differ from an element of {G} by a factor which is
an element of the subgroup 7 of pure translations.

eq

2z
g
1 S .
|
Ry
d 5 1
5 >
| 4 N |/ 6
I 3 o1y
|
® 4 P
b/é_—“‘{_—_” g 0 ’
7 3
// QX

Ve / /
2 3 6 z
Ficure 1. Diagram for the point group O, Frcure 2. Diagram for the point group Dy, and
and its subgroups. its subgroups.

The basic equation (4-10) will enable us to relate the vector representations of space
groups and double space groups to the ray representations of the point groups. In setting
up this relation it is important to have a quick, simple method for evaluating products of
space group elements such as appear in equation (4:7). This may be achieved using a multi-
plication table to evaluate the products 4;¢; and a diagram to evaluate the products ¢;v(a;).
Since every point group is a subgroup of either O,, or Dy, two multiplication tables and two
diagrams suffice. These are given in tables 1 and 2 and figures 1 and 2.

Three notations for the point group element are given at the top of tables 1 and 2:

(i) A simple subscript notation a, = ¢, a,...a, (b’s for table 2). This notation enables
products a;a; to be obtained immediately from the table entries; these entries give the
subscript £ of the product (4;a; = ;). The bars appearing over certain entries should be
ignored here; they refer to the double groups (cf. §7).

(ii) A geometrical notation related to figures 1 and 2. Here each rotation is a positive
rotation (right hand screw) about the axis from the origin O to the appropriate point at
the edge of the diagram. The angle of rotation is always less than or equal to 7. This notation
and the diagrams enable us to write down all products ¢;v(a;) immediately. For example,
if v(a;) is a non-primitive translation in the direction 4 (figure 1), a;,v(a;) is a non-primitive
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RAY REPRESENTATIONS OF POINT GROUPS 7

translation in the direction 5. This notation also enables us to identify the matrices of the
vector representations of the point groups given by McWeeny (1963).

(iii) The coordinates of equivalent positions. These are the vectors that are obtained by
transforming a general column vector (x,y,z) by all elements a; (or 4,) of the point group
(cf. equation (4-1)). This notation enables us to make use of the International tables for X-ray
crystallography (1953) referred to hereafter as the International tables. The listing of equivalent

TABLE 1. EQUIVALENT POSITIONS, GEOMETRICAL IDENTIFICATION AND MULTIPLICATION

. |
/I

< TABLE FOR THE POINT GROUP O, AND ITS SUBGROUPS
i The entries give the subscript &£ such that a;a; = ;. The bars indicate the factor system for spin representations.
S E Equivalent positions
fad E x x % x| z Z z Z Yy § Y y| x x Z z y Y| X EF Z z F y
wQ |V Iy ¥ s 3 F sz oz z Zl:zzyy ¥ alzzyy 3o
TO z Z Z z|y y y ¥y x ® x x|y y x X z z|¥§ y T x Z Z
= P o
o Geometrical identification ( figure 1) and multiplication table
§% e C3 C4 C3 CP CP CP CP CPCP CP CP|C® €2 Cpv CY Cp* Ci | €8 €3 ¢ CE ¢ Cf
EE Lol { 1 2 3 4/ 5 6 7 8 9 10 11 12|13 14 15 16 17 18 |19 20 21 22 23 24
(®)
85} o 11 2 3 4|5 6 7 8 9 10 11 12|13 14 15 16 17 18 19 20 21 22 23 24
=z 2|2 I 4 3, 7 8 5 6 12 11 10 9,14 13 21 22 24 23|20 19 15 16 18 17
E§ 3/ 3 4 I 2/ 8 7 8 5 10 9 12 I1 20 19 16 15 23 24 |14 13 22 21 17 18
Sl 4/ 4 3 2 1,6 5 8 7 11 12 9 10|19 20 22 21 18 I7 |13 14 16 15 24 23
5/ 5 8 6 7|9 12 10 11 1 4 2 3|18 24 14 20 16 2223 17 19 13 2I 15
6/ 6 7 5 8|11 10 12 9 4 1 3 2,17 23 20 14 21 15|24 18 13 19 16 22
7,7 6 8 5012 9 IT 10 2 3 1 423 17 13 19 22 16 | I8 24 20 14 15 21
8 8 5 7 6|10 11 9 12 3 2 4 1124 18 19 13 15 21 |17 23 14 20 22 16
9,9 11 12 10 1 3 4 2 5 7 8 6|22 15 24 17 20 13|21 16 23 18 19 14
10[(10 12 11T 9| 3 1 2 4 8 6 5 721 16 18 23 13 20|22 156 I7 24 14 19
1111 9 10 12| 4 2 1 3 6 8 7 5|15 22 23 18 14 19|16 21 24 17 13 20
12112 10 9 11| 2 4 3 1 7 5 6 8|16 2I 17 24 19 14 |15 22 18 23 20 13
1313 14 19 20|16 15 22 21 24 23 18 17| 2 1 8 7 9 10 4 3 & 5 11 12
14 /14 13 20 19|22 2T 16 15 17 18 23 24, 1 2 6 5 12 11| 3 4 8 7 10 9
15156 22 16 21 |18 23 17 24 20 13 19 14| 9 11 3 1 6 812 10 2 4 7 5
, |16 (16 21 15 2224 17 23 18 13 20 14 1910 12 1 3 7 5|11 9 4 2 6 8
<7 |17 17 23 24 18114 20 19 13 22 16 15 2I| 7 6 9 12 4 1, 8 5 10 11 3 2
r ~ (1818 24 23 17|20 14 13 19 15 21 22 16| 8 5 11 10 1 4| 7 6 12 9 2 3
< 19119 20 I3 14 | 2T 22 15 16 23 24 17 18| 3 4 7 8 1II 12| I 2 5 6 9 10
>=> 120[20 19 14 13|15 16 21 22 18 17 24 23| 4 3 5 6 10 9| 2 1 7 8 12 II
OF |21]21 16 22 1523 18 24 17 19 14 20 13|12 10 4 2 8 6| 9 11 1 3 5 7
e E 22 122 15 21 16 |17 24 18 23 14 19 13 20,11 9 2 4 5 7,10 12 3 1 8 6
O 23 (23 17 18 24 |19 13 14 20 2I 15 16 22 6 7 10 11 2 3, 5 8 9 12 1 4
ola) 24 |24 18 17 23 |13 19 20 14 16 22 21 15, 56 8 12 9 3 2| 6 7 11 1T 4 1
= uw /

Inversion a; commutes with all a;, ai? = ¢, a,a] = a;.

positions in these tables gives the non-primitive translation associated with each element of
the point group. Since non-primitive unit cells are used for many space groups in the
International tables, the non-primitive translations obtained directly from the tables may not
be minimal; to obtain minimal non-primitive translations, suitable primitive translations
of the relevant lattice must be added. A change of origin may also be used in some cases to
simplify the minimal non-primitive translations.

PHILOSOPHICAL
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8 A. C. HURLEY

We note that in figure 2 and table 2 the oblique axes x, y, z of the International tables are
used rather than the orthogonal axes which appear in the corresponding diagram of

Koster (1957).

TABLE 2. EQUIVALENT POSITIONS, GEOMETRICAL IDENTIFICATION AND MULTIPLICATION
TABLE FOR THE POINT GROUP D6h AND ITS SUBGROUPS

Theentries give thesubscriptksuch that b,6; = b,. The bars indicate the factor system for spin representations.

Equivalent positionst
x X ¥y y—x x—y y x  y—x ¥ x y x—y
Yy g xX—y x X Yy—x | x—y Y x Yy—x x 7
z z z z z z z z A Z z z
Geometrical identification ( figure 2) and multiplication table
¢ Cs C: Cr ¢ Cr|lCp ocp o Ccp o cyp Cp CP
|1 2 3 4 5 6 78 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 6 5 4 3 10 12 11 7 9 8
3 3 6 4 1 2 5 8 9 7 12 10 11
4 4 5 1 3 6 2 9 7 8 11 12 10
5 5 4 2 6 3 1 11 10 12 9 8 7
6 6 3 5 2 1 4 12 11 10 8 7 9
7 7 10 9 8 12 11 I 4 3 2 6 5
8 8 12 709 11 10 3 1 4 8 5 2
9 9 11 8 7 10 12 4 3 1 5 2 6
10 | 10 7 11 12 8 9 2 5 6 1 3 4
1|11 g1z 10 7 8 5 6 2 & I 3
12 12 8 10 11 9 7 6 2 5 3 4 1

Inversion b} commutes with all b;, b2 = ¢, b; b} = bj.

t The oblique axes of the International tables (1953) for the hexagonal system are used here (cf. figure 2).

A space group G is most economically specified by giving:

(i) the basic translations t;, t, and t, which generate the subgroup 7 of pure transla-
tions, that is, the Bravais lattice;
(ii) the point group G, of order g;

(iii) the non-primitive translations associated in G with a set of generators of G,,.

For all non-cyclic groups, sets of generators (a,b,...) are given at the head of tables
A0 to A11 in the appendix to this paper. The geometric identification of these generators
and the algebraic relations they satisfy are also given. From tables 40 to 411 we see that,
even in the most complex case (0,), only five generators and the corresponding non-
primitive translations need be specified. The geometric identification of the generators
enables us to relate them to the elements (a,a,,...) of table 1 or (b,,5,...) of table 2. In
the case of 0,, for example, we have?l a = a,, b = a3, ¢ = a5, d = ay3, 1 = aj.

Once this identification has been made, equation (4-3) table 1 (or 2) and figure 1 (or 2)
enables us to write down immediately any products of the generators {a}, {4}, ... of the
reduced set {G,}. In this way we may obtain:

+ This choice of generators is not unique.
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RAY REPRESENTATIONS OF POINT GROUPS 9

(i) The non-primitive translation associated with each element of the point group G, in
the reduced set {G,}. Alternatively, all these non-primitive translations may be obtained
directly from the International tables.

(ii) The primitive translation R,(i,j) associated with the product {a}{a;} of any two
elements of the reduced set {G,} (cf. equation (4-10)). One could, in fact, prepare a complete
table of the g2 factors {¢|R,(s,7)} for all possible products {a;}{a;}. This is unnecessary,
however, since relatively few products are needed to identify the representations (cf. §9).
It is simpler to use table 1 (or 2) and figure 1 (or 2) to evaluate any required product.

5. GENERAL THEORY OF THE REPRESENTATIONS OF SPACE GROUPS

We follow Koster (1957). To describe the irreducible representations of a space group G
we need three concepts: the reciprocal lattice, the Brillouin zone and the group (¢') of the
k vector.

The reciprocal lattice is generated by three basic vectors b;, b,, b; defined by

t.b, = 2n8; (i,j—1,2,3). (5:1)

Here t,, t,, t; are the basic primitive translations which generate the subgroup  of pure
translations. The points K, of the reciprocal lattice are given by

K, = @b +4,by+¢5bs, (5-2)

where ¢,, g5, g5 are any integers.

The Brillouin zone is the symmetrical unit cell of the reciprocal lattice; its interior
consists of all points nearer to the origin of the reciprocal lattice than to any other lattice
point. It follows that no two points in the interior of the Brillouin zone are equivalent, that
is, differ by a vector of the reciprocal lattice, whereas any point on the surface of the
Brillouin zone is equivalent to at least one other point on the surface.

Koster shows that a complete set of inequivalent irreducible representations of the
subgroup 7 of pure translations {¢|R,} is given byt

exp (—ik.R), | (53)

where the vector K ranges over the interior and surface of the Brillouin zone. Since equivalent
points on the surface of the zone yield equivalent representations of .7, each set of equivalent
surface points contributes only one irreducible representation. All these representations are
one-dimensional since 7 is Abelian.

For each k vector within or on the surface of the Brillouin zone certain elements {6 |t} of
the space group G will have the property

exp (ibk.R,) = exp (ik.R)) (5-4)

for all primitive translations R,. Elements with the property (5-4) form a subgroup # of G,
called the group of the wave vector k (or k vector). Clearly for any k vector, #" is a space
group which includes the entire group  of pure translations.

t The vector k here is the negative of Koster’s (1957). Either choice gives a consistent mathematical

theory, but the physical interpretation of k as a quasi-momentum requires a minus sign in equation (5-3)
and a plus sign in the expression for a Bloch function (cf. §8, and Altmann & Cracknell (1965)).

2 Vor, 260, A.


http://rsta.royalsocietypublishing.org/

PN

s |

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

10 A. C. HURLEY
The condition (5-4) is equivalent to
bk =k+K,, (5°5)

where K is a vector of the reciprocal lattice. Now if K is in the interior of the Brillouin zone
so is bk. Thus for interior points of the zone the condition (5+5) defining .#" reduces to

bk —k (56)

since no two interior points of the Brillouin zone can differ by a non-zero vector of the
reciprocal lattice.
We are now in a position to state the basic theorems given by Koster (1957).

THEOREM 1. Any irreducible representation of a space group G, in standard form, induces an
irreducible representation of A, in which the pure translations {¢ |R,} are represented by the diagonal

matrices exp (—ik.R)) I, (5+7)

Here d is the dimensionality of the irreducible representation of " and I, is the d xd
unit matrix.

TueoreMm 2 (converse of 1). Any irreducible representation of A, the group of the wave vector K,
in which the pure translations {¢|R,} are represented by the diagonal matrices (5:7) may be extended
to an irreducible representation of the entire space group G.

The standard form of the representations and the procedure for extending the representa-
tions of o are fully described by Koster. The process of extension involves the resolution
of G into left cosets with respect to the subgroup #. Once this resolution has been effected,
the matrices representing the elements of G may be written down immediately in terms of
those representing the elements of .

6. IRREDUCIBLE REPRESENTATIONS OF % AS RAY REPRESENTATIONS OF
POINT GROUPS

The theorems of §5 reduce the problem of finding all irreducible representations of
a space group G to that of finding, for each k vector of the Brillouin zone,t those irreducible
representations of 2" in which the pure translations appear in the form (5-7).

To obtain these representations of # we consider the point group G, (k) formed by the
rotational parts of the elements of #. We note that, in general, G () is not a subgroup of .
We consider also the reduced set {G,(k)} of the space group - consisting of the elements

{6} = {6 |v ()} (6-1)

Here b runs through the g, elements of G,(k), and v(b) is the minimal non-primitive
translation associated with 4 in the space groups G and #.

+ To obtain all distinct representations of G, one need not consider the whole Brillouin zone but only
a set of k vectors such that no two vectors k, k' of the set satisfy the relation

k' = ak+K,.
Here a is any element of the point group G, and K; is any vector of the reciprocal lattice. The set defined

in this way (the fundamental region of reciprocal space) constitutes a fraction 1/g of the whole Brillouin
zone, where g is the order of G, (Koster 1957).
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RAY REPRESENTATIONS OF POINT GROUPS 11

Let D({6 | t}) denote an irreducible representation of »#" in which the pure translations
appear in the form (5-7). For any two elements {4;}, {6,} of the reduced set {G,(k)} we have

D({b3) D({;3) = D({63{b;3)
= D({¢|R,(5,))}{b:0;})
= D({¢|R, i,j)})D {6:6;3}). (6-2)
Therefore D({b;}) D({b;}) = exp (—ik.R,( D({b;b;}). (6-3)

Here we have used equations (4-10), (5:7) and the fact that the matrices D provide
a representation of .

Comparing equation (6-3) with equation (2:1) we see that the matrices D({b;}) repre-
senting the elements {;} of the reduced set {G,(k)} provide a ray representation of the point
group G, (k) with the factor system

A(b;, b;) = exp (—ik.R,(1,7)). (6-4)

This ray representation of G,(k) is clearly irreducible.
We have therefore established the following result.

THEOREM 3. An irreducible representation of A in which the pure translations are represented by
the diagonal matrices (5-7) inducest an irreducible ray representation of the point group Gy(k) with

the factor system A(by,5;) = exp (—ik.R,(3,7)). (6-4)

Y5

Here R, (7,7) is the primitive translation given by

{030} = {e| R, (5,7)} {b:b,},
that is from equation (4-8)
R, (7)) = b;v (b)) +v(b;) —v(b;b)). (6-5)

Conversely, we have

THEOREM 4. An irreducible ray representation D({b;}) of the point group Gy(k) with the factor
system (6-4), (6-5) may be extended? to give an irreducible representation of the space group A, in
which the pure translations are represented by the diagonal matrices (57).

For a general element {4 |t} of #" the extension? of the representation is provided by the

equations DI =DV +R,)
= exp (—ik.R,,) D({8}). (6-6)
Theorems 1 to 4 enable us to construct complete sets of full matrix representations of all
230 space groups from the ray representations of the point groups given in the appendix
and the vector representations of the point groups given by McWeeny (1963). In some
cases one must carry out a preliminary gauge transformation of the form given by equations
(2+6) and (2-7) in order to associate the factor system (6-4), either with the trivial factor
system A(b;,b;) =1 of a vector representation; or with one of the factor systems listed
explicitly in tables A 1 to A 11. The derivation of these gauge transformations is described
in §9.

1 Since G, (k) is not a subgroup of £ the terms ‘induce’ and ‘extend’ are, perhaps, not strictly appro-
priate. However, their meaning is clear from the derivation of theorem 3.

2-2
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12 A. CG. HURLEY

For symmorphic space groups, and for k vectors in the interior of the Brillouin zone for
non-symmorphic groups, the simplifications given by Koster (1957) appear naturally in
the present treatment. For symmorphic groups all the non-primitive translations appearing
in equation (6-5) are zero. Consequently, R, (¢,7) = 0 for all values of 7 and j and the factor
system (6-4) becomes the trivial factor system A(b;, ;) = 1. The irreducible representations

of A" are therefore given by D({b] 1) = exp (—ik.t) T(3), (6:7)

where I'(b) is a vector representaﬁon of Gy (k).
For points in the interior of the Brillouin zone all elements ; of G () leave k invariant
(equation (5:6)). Consequently, from equations (6-4) and (6-5) we have
A(bys b;) = exp (—ik. (b;v(6;) + V(b)) —v(6:5))))

= exp (—ib;'k.v(b;)) exp (—iK.v(b;)) exp (ik.v(};b;))
_ exp (—ik.v(};)) exp (—ik.v(},)) .

exp (—ik.v(5;5,) (6-8)
Therefore, from equation (2:6) we see that the gauge transformation
() — exp (ik. v(5)) D({b) (6:9)
associates the factor system (6-8) with the trivial factor system A(4;,6;) = 1.

The matrix representing a general element {6 |t} of ¢ is from equation (6-6), (6+9)
D({b|t}) = exp (—ik.R,) exp (—ik.v(d)) D'(d)
= exp (—ik.t) D'(b). (6-10)

The final result (6-10) is identical with (6-7) since the matrices D’(b) provide a vector
representation of G (k).

7. SPIN REPRESENTATIONS

The effects of electron spin are usually incorporated into the representation theory of
point and space groups by the following device (Wigner 1959). The full rotation group R,
possesses, in addition to the usual one-valued vector representations 2,, %, ..., certain two-
valued representations 2y, 9, .... These two-valued representations of R; are obtained as
one-valued vector representations of the covering group of R;, which is the group U, of
2% 2 unitary transformations. When applied to a point group G, with elements a, = ¢,
ay, ..., a4, this approach leads to a consideration of the so-called double group G, with
elements a; = ¢, ay, ..., a4, a4y, @y, ..., @, (Koster 1957). The representations of Gy, are of two
types:

(i) Those derived from the one-valued vector representations of G,. The matrices I" of
these representations satisfy (@) = I'(a). (7°1)

(ii) The so-called additional representations of G,,. Here the representation matrices
I, satisf; _
i Ly(@) =—T\(a). (7:2)
As Weyl (1931) points out, the theory of ray representations provides an alternative
treatment of electron spin which is in many ways simpler than the usual one. Here the spin
representations of a point group G, are obtained as one-valued ray representations of G,
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RAY REPRESENTATIONS OF POINT GROUPS 13

with a factor system A, given by the standard spin representation 2, of the full rotation
group.

In specifying the elements of G, it is necessary to distinguish between rotations ¢ and
27 —¢ about the same axis. We adhere to the conventions given in §4 (figures 1 and 2).
All rotations are positive rotations (right-hand screw) about axes directed away from the
origin through angles less than or equal to 7.

With these conventions, the matrix for the rotation (¢, n), through an angle ¢ about the
axis 1 in the standard spin representation 2,, is given by

R,(4,1) = Icos }¢—is. nsin 1¢ (7-3)

her I_(l 0) 0_(0 1) 0_(0—4) ., M(l 0)
whetre o 1) += 1 o) v \i o) == lo—1)

For an improper rotation a; we have R (a;) = R (a;).

The matrices (7-3) were constructed explicitly for all elements of O, and Dg,. By forming
products of these matrices the factor systems indicated by the bars in tables 1 and 2 were
obtained. If @, (or 4,) appears unbarred in these tables, this implies

Rs(ai) Rs(aj) = ‘Rs(ak), (7'4)
i.e. /ls(di, aj) = 19
whereas an entry @, indicates that
Ry(a) R(a;) = —R(ay), (7°5)
ie. A (@, a;) = —1.

Since any point group is a subgroup of either O, or D, tables 1 and 2 suffice for all
32 point groups. Hence by associating the factor system (7-4), (7-5) obtained from table 1
(or 2) with one appearing explicitly in tables A 0 to A 11 we obtain full matrix spin represen-
tations of all the point groups. The required gauge transformations are easily obtained by
considering the generators of the point groups (§9). These spin representations I',(a;) of
a point group G, may immediately be extended to full matrix vector representations (the
additional representations) of the double group G, by using equation (7-2).

The treatment of the double space groups is equally simple. The factor system A, (b, b i)
for the ray representation of Gy(£), which corresponds to a spin representation of the
group " of the k vector, is given by

As(bis bj) = A,(8;, b)) exp (—iK. R, (4,)). (7-6)

That is, to obtain the factor system for a spin representation of #; we introduce a minus
sign on the right-hand side of equation (6-4) whenever the product 4,5; appears with a bar
in table 1 (or 2). Again a gauge transformation may be required to associate the factor
system (7-6) with one appearing explicitly in tables A0 to A 11 (§9).

Finally the ray representations of G (), with and without spin, may be extended using
equations (7-1) and (7-2) and theorem 4 to full matrix vector representations of ., the
double group of the k vector, and hence by theorem 2 to full matrix vector representations
of the double space group G,.

We note that the separation of the elements of a double group into classes, which is the
key to the usual treatment of additional representations (Koster 1957) is unimportant here.
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14 A. C. HURLEY

These classes may, of course, be obtained from the final character tables. Two elements
belong to the same class if and only if they have the same character in all irreducible
representations.

' 8. PROJECTION OPERATORS AND BASIS FUNCTIONS

Following the convention introduced by Wigner (1959) and Weyl (1931) the transforms
of scalar functions of position f and spinor functions g are defined by the linear operators

LianS (%) =f{a| %) = fla7 (x 1)), (8:1)
ZLiang(X) = R, g({a| }7'x). (8-2)

Here R, is the matrix representing the rotation @ in the standard spin representation
(equation (7-3)) and the inverse transformation {a|t}~! appearing in equation (8-1) has
been evaluated explicitly with the aid of equation (4:3).

With this convention the linear operators £, form a group isomorphic with the
group G. Consequently we may abbreviate £, and £, to {a|t} without risk of
confusion.

One of the most useful applications of the full matrices for the irreducible representations
of a group is to provide projection operators for basis functions. If ['®(a,) is an irreducible
representation of any group G and ¢ is an arbitrary function (or vector), then the function

(vector) @ — 3 (Fz‘}")(an))*dn'ﬁ (83)

Y an€G
is either identically zero or transforms as the ith partner in the representation I'®
(McWeeny 1963). '
If, in equation (8:3), G is taken as & the group of the wave vector K, an important
simplification arises from the special form (6-6) of the representation matrices.

hus it b1t = |v(H)+R,} (84)
is a general element of " and if
DO({b|t}) = exp (—ik. R,) DW({5}) (8:5)
is an irreducible representation of # in standard form, then (8-3) becomes
@ = 3 DE* ((0]6) ] Gy
~ 3 3 Dip* () exp (ik. R,) |}y (56

where the first summation is over all elements b of G(£) and the second is over all primitive

translations R .
Now from equation (4-3) we have

{016 =0|vE)+R,} = {[v(0)}He|67'R,} = (b} {e|b7 R,} (8:7)

and as R runs over all primitive translations so does R, = 6~1R,, since the rotation 4 leaves
the lattice of primitive translations invariant. Consequently, equation (8:6) may be written

= 3 X Dip* ({0)) By exp (ik. bR,) {e [ R}y
=3 3 Dip* ({0) By exp (167K R,) {¢|R,} ¢ (8-8)


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RAY REPRESENTATIONS OF POINT GROUPS 15
But, since 4 (and hence 671) is an element of G (k)
exp (i67'k.R)) = exp (ik.R,),

so that @ = Eb ‘RZDE.}?‘)* ({8}) {b}exp (ik.R,) {¢| R} ¢
= 2Dp* (163) 63 (X exp (k- R,) {e| R, } ). (8:9)

The sum over R, in equation (8-9) is now independent of 4. From equations (5-3) and
(8:3) we see that this sum gives a basis function ¢,(x) for a one-dimensional representation
of the subgroup Z of pure translations. Using the explicit form of equation (8:1), for the
case a = ¢, we can express ¢,(X) as a simple Bloch function,

Pu(x) = 3 exp (ik.R,) y(x—R,). (8:10)
Hence equation (8-6) finally reduces to
i = 2 Di*({0}) {6} f (8:11)
4uk

We note that the linear operator £, which appears in abbreviated form in equation
(8-11), involves the element {6} = {6 | v(b)} of the reduced set {G,(k)}; {6} is not, in general,
an element of the point group G,(£).

Koster (1957) shows that a basis function for an irreducible representation of % in
standard form, such as (8-11), is also a basis function for an irreducible representation of the
entire space group G.

Equation (8-11) shows that one may construct basis functions without extending the
ray representations of G(k) to representations of #" and G via theorems 4 and 2. Provided
one works always with Bloch functions, or other functions which transform irreducibly
under 7 (plane waves, orthogonalized plane waves, augmented plane waves, etc.), the
matrices of the ray representations themselves suffice to project out basis functions for any
desired irreducible representation. Furthermore, the matrix elements of these ray repre-
sentations satisfy orthogonality relations (equation (2-2)) of precisely the same form as those
for ordinary vector representations; these orthogonality relations may be used in the usual
way to simplify secular equations, derive selection rules and so on.

Basis functions for the double space groups may be obtained in a very similar way; one
need only replace equation (8-1) with equation (8-2), where g is now a two-component
spinor function of position. Again, if Bloch functions are used throughout, one needs only
the matrix elements of the appropriate ray representation of the point group G,(£). The
factor system of this ray representation is given by combining minus signs from table 1
(or 2) with equation (6-4).

9. ExAMPLES

In order to use the matrix elements tabulated in the appendix one must first identify the
factor system (6-4) with one appearing explicitly in tables A 0 to A 11. In some cases a gauge
transformation of the form (2-6), (2:7) is required.

For space groups of low symmetry, that is when G contains only a few elements, this
identification is very easily made for all k vectors on the surface of the Brillouin zone. Again
for space groups of high symmetry the identification is very simple for k vectors such that
G,(k) contains only a few elements. The most complex cases are those where G, (k) contains
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16 A. C. HURLEY

a large number of elements; up to 24 for space groups of the hexagonal system and up to 48
for those of the regular (cubic) system. Even here the calculations required to make the
identifications are quite short, since initially we can concentrate on the generators of G(k).
Tables A0 to A 11 show that never more than five generators are required.

In making the identifications we first work out the algebra of those elements {a}, {4} ... of
the reduced set {G,(k)} which correspond to the generators a, b, ... of the point group G, (k)
using equation (6-4).T These elements {a}, {6}, ... will be referred to as the generators of
{G,(k)}. This algebra is then identified with one appearing explicitly in tables A0 to A11
for 4, B, ..., using a gauge transformation if necessary. Once the generators have been
identified in this way the identification is extended to all elements of {G,(k)} by evaluating
the products which label the matrices in tables A1 to A11.

We illustrate the procedure for several points of high symmetry in the regular holohedric
space groups O} ... 0}%. These are, in fact, the most complex cases which arise for any
space group.

Sets of generators for the groups O} ... O}° are given in table 3.

TABLE 3. GENERATORS OF THE REGULAR HOLOHEDRIC SPACE GROUPs O} ... O}°

generators of 0, and their non-primitive translations}

group lattice? a=a, | b=ua ¢ = ag d = ay i = a
O}, Pm3m r, 0 0 0 0 0
0%, Pn3n T, 0 0 0 0 T
03, Pm3n T, 0 0 0 T 0
0%, Pn3m r, 0 0 0 T <
03, Fm3m . 0 0 0 0 0
08, Fm3c T, 0 0 0 0 T
O], Fd3m r, 0 0 0 T T
0%, Fd3c I 0 0 0 T, T
03, Im3m |4 0 0 0 0 0
019, 1a3d Iy T T, 0 T 0

T P,,.Ztl = ai, F;:tl = %a(j+k), Ff;;tl = %a(_i+j+k)’
2 = aj, t, = fa(k+i), t, = la(i—j+k),
t; = ak. ty = fa(i+j). ty = da(i+j—Kk).

I For O}, O3, Of; v = ta(i+j+k) = §(t;+t,+15).
For 0¢; v = Lak = L(t,+t,—t;).
For Of; 7 = la(i+j+k) = 1(t;+t,+15).
For 0%; v, = }a(i+j+k) = 3(t,+t,+t;).
For O}; v = jak = }(t; +1,), 7, = Jai = }(t,+1), v = fa(i+i+k) = §(t,+t,+t5).

The lattice I, for O} ... O is the simple cubic lattice; the reciprocal lattice is also simple
cubic with the Brillouin zone given in figure 3. From equation (5:1)

2m, 2m, 2
bl = *a—“ 1, b2 - ‘a—J, b3 == ‘Zk.

1 Strictly, the algebra obtained from equation (6-4) applies not to the elements {b;} = {b;|v(b;)} of
{G,(k)} themselves but to the matrices D({b;}) which represent them in a ray representation of G(k). How-
ever, for a given k vector, the same algebra is obtained for all ray representations, so that it is legitimate and
convenient to use this algebra also for the elements {5;} themselves.
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RAY REPRESENTATIONS OF POINT GROUPS 17

The lattice I’ for O3 ... O} is face-centred cubic; the reciprocal lattice is body centred
cubic (figure 4).

2 < 2m . . 2w, .
by =" (—itj+k), b= (—j+k), by=""(i+j-k).

Finally, O} and O}° have the body-centred lattice I';; their reciprocal lattice is face-
centred cubic with the Brillouin zone shown in figure 5.

2 . 2 . 2m . .
by == (k+j), by="" (K1), by=""(i+]).

z

M R

p¢
/

The labelling of the special points in figures 3 to 5 follows Koster (1957).
Y N\es

l
i
!
=/ To
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,// b\\ 7
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Ficure 3. Brillouin zone for the space groups O} ... Of.

From table 3 we see that the groups 0}, O} and O}, are symmorphic. For these groups the
representations of " are given by equation (6:7) and the tables of McWeeny (1963) for
k vectors either within or on the surface of the Brillouin zone. However, the additional
representations of the double groups #; will be obtained by the method of ray representa-
tions, since explicit matrices are not available in the literature for the additional representa-
tions of the double point groups.

The points of high symmetry which we shall consider are:

(i) The points I'and R for O} ... Of; I' and H for O3 and O}°. If, in figures 3 and 5, we
mark in all points equivalent to R and H, we see that for these points, as for I', ¢ is the full
space group and the point group G,(£) is O,. For O3 ... O} there is no point other than I'
which displays the full symmetry O,

(ii) The point P for 03 and 0}°; Gy(k) = T,,
(iii) The point X for O} ... 0%; G,(k) = Dy,
(iv) The point L for 03... 0%; G,(k) = D,,,
(v) The point M for O} ... Of; Gy(k) = Dy,

T These matrices may alternatively be generated from the basis functions listed by Koster, Dimmock,

Wheeler & Statz (1963) ; see also Kovalev (1961).

3 VoL. 260. A.
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18 A. C. HURLEY

z

Ficure 4. Brillouin zone for the space groups Oj... O%.

Ficure 5. Brillouin zone for the space groups O}... O)°.

The explicit identifications for these points, which include all those for which the order
of G (k) is greater than 8, are given in tables 4 to 7. The identifications for the spin representa-
tions are simply the product of the factor for the representation without spin and the factor
for the spin representation of the point group.
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TABLE 4. MINIMAL NON-PRIMITIVE TRANSLATIONS OF SPACE GROUPS O}. IDENTIFICATIONS
AT R, H AND P, AND FOR SPIN REPRESENTATIONS OF O,(03)

minimal non-primitive translations? identifications
03 03 0] 05 0, O3 00| o,—op | 0 03 of |0 op| 0
label (tables " " " " " " " " T " Rh R R H Pl | T
A9, All)
1 1 1 1 1 -1 |-1
-1 -1 1 |-1 1
Oy
ol E a . . . . . . . 1 1 1 1 1 1 1
< A a, . . . . . . T 1 1 1 1 -1 i 1
" B a, . . . . . . T, 11 1 1 -1 i 1
< AB a, . . . . . . Ty 1 1 i i - } 11 i
C a . . . . . . . 1 1 —
S E c P O R 1|1 1 11 1 -1
45} AC a, . . . . . . T 1 1 1 1 -1 1 1
o BC ag . . . . . . T, 1 1 1 1 -1 i 1
= O ABC ag | . . . . . . T 1 1 1 1 |-1 i 1
O AC? ap| - .. e 1 (1 1 1 =1 i1
=w BC? ao | . . . . . T, 1 |1 1 1 ———i i |- i
ABC? a . . . . . . T 1 1 1 1 |- i |-
- 11 3
< - — B R ; -
E% D ayq T T T T T, 1 1 1 1 1 s 1
I= CD gy T T T T T, 1 1 1 1 1 s: v i
s &t) g C*D agg T T T T T, 1 1 1 1 1 s’ i
DAH AD ayg T T T T T5 1 1 1 1 -1 v -
9 4 ABCD a6 T T T T T 1 1 1 1 |-1 7 —i
E§ BC2D ag, T T T T, T4 1 1 1 1 |-1 r’ —i
&= BD a; T T T T T4 1 1 1 1 |—-1 r i
ACD a5 T T T T Ty 1 1 1 1 |- i r i
ABC?D a T T T T, T, 1 1 1 1 |- r’ i
ABD a;: T T T T T, 1 1 1 1 -1 r i
BCD gy T T T T T4 1 1 1 1 |-1 r’ i
AC*D yy T T T T T 1 1 1 1 |—-1 r’ i
I a T T T T -1 1 1 1 1 } 1§
Al a; T T T T -7 T 1 1 1 1 |- 1
BI ai T T T T -7 Ty 1 1 % i - i i
ABI ay T T T T -1 Ty 1 1 -
Ccr az 7 T T T -7 1 1 1 1 1 -1
cu aq T T T T -7 1 1 1 1 1 -1
ACI a; T T T T -7 T 1 1 1 1 |-1 1
p BCI ag T T T T -7 Ty 1 1 1 1 |-1 1
T ABCI ag T T T T -7 T, 1 1 1 1 |-1 1
~ AC?H ap | T T T T -7 T 1 1 1 1 |-1 —1
— BCI a,| T I I T R X X 1 1 1 1 -1 —1
§ S ABC?I ay, | = T T T -7 Ty 1 1 1 1 |-1 -1
O = DI ans | T T . T . T, T, 1 |-1 1 1 1 i
ez H2 cDI dy| T v T T | T 1 -1 1 1 1 i
- 5 Cc2DI do| © =t T T, | T 1 -1 1 1 1 i
ADI ajg| = T T T, Ty 1 |—-1 1 1 |-1 —1i
= O ABCDI | dy| Tt © x 5 | T, 1 -1 1 1 |-l —i
v BC2DI il v T T, | T 1 -1 1 1 |-1 —i
1) BDI ay | © T T T, Tg 1 |-1 1 1 -1 i
5 4 ACDI as| T T T T, Ty 1 |-1 1 1 -1 i
T C ABC*DI aiz | = T T T, T, 1 -1 1 1 -1 i
e 5 N ABDI Ay | T T T T, T, 1 |-1 1 1 -1 i
8 <0 BCDI apy | =T T T T, T 1 |-1 1 1 -1 i
0‘2 AC?DI ag, | T T T T | s 1 /-1 1 1 -1 i
=
EE t See footnotes to table 3. In addition: for 0%; 7, = Jak = L(t;+t,—t;). For O}%; 75 = }aj = §(t; +ty),

7y = fa(—i+ji+k) = i, 75 = fa(i—j+K) = It, v = fa(i+j-k) = it

1 At P, Gy(k) = Ty, d = ajy (table A 9) and elements a3, ayy, ..., a5, appear dashed in Gy(k) and %",
e.g. ABCD = r{ajg|v,}. = (1 +1)/y2,s = (1-i)/J2.

§ For Oj only.
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20 A. C. HURLEY

TABLE 5. IDENTIFICATIONS AT POINTS X AND M’, AND FOR
SPIN REPRESENTATIONs OF D, (Dj,)

e o8 o [ o oy [ op o0 0 0 Di
(table A 8) X Mt X M Y M X g .
p 1 1 1 1 1 1 1 1 1| -1
p T i N B B SRS | 1 -1 -1 |
D1

A a6 1 i i 1 1 i 1 i i i
4 s b i -l i i 1 i i i
B ay i 1 1 1 i i 1 i i ;
A2B a; i —1 1 -1 i i 1 i i ;
ASB gy i -1 i -1 1 1 1 ] 1 1
¢ aj 1 1 1 1 1 1 1 1 1 i
AC as 1 —1 i 1 ~1 —1 1 —1 i 1
A20 aj 1 -1 1 —1 1 1 1 1 1 i
ASC a6 1 i i =1 —i i T ; 1
BC ay —1 —1 1 1 —i —i 1 i i 1
ABC a4y | —i 1 i 1 1 1 1 1 1| —i
A2BC ay —1 i 1 —-1 —i . 1 _3 i 1

t To facilitate tabulation M’, where G,(k) is the same as at X, is considered here in place of M (figure 3).
For identifications at M we use the isomorphism {a, 4}« {a,4}, 145} < {a3}, {ai}{a}}, etc.

1 Non-primitive translations of elements of reduced set {G,(k)} = {D,,} appear in table 4.

TABLE 6. IDENTIFICATIONS AT THE POINT L, AND FOR
SPIN REPRESENTATIONS OF Dg,(D3,)

label 6 7 8 <
(table A 5) o, 0L O 3
M ~1 1 -1 1
Dyt

E 2 1 1 1 1
x4, a'5 ]. ]. 1 1
42 ay 1 1 1| -1
A3 a 1 1 1| -1
A4 a 1 1 1| -1
A5 a 1 1 1 1
B a5 i 1 i i
AB ay i 1 i i
A2B ahy i 1 i i
A3B s i 1 i -
A'B a i 1 i i
A5B P i 1 i | —i

t Non-primitive translations of elements of reduced set {Gy(k)} = {D;,} appear in table 4.


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RAY REPRESENTATIONS OF POINT GROUPS 21

Also shown in table 4 are the minimal non-primitive translations appearing in the
elements of the reduced set {G,} for the non-symmorphic groups O%. These may be obtained
by forming appropriate products of the generators of table 3 or directly from the International
tables (1953). The ordering of the elements in tables 4 to 7 is chosen to agree with that in
the tables of the appendix.

Five fully worked examples will illustrate the methods used to derive the results of
tables 4 to 7. Similar calculations will yield the identifications for any Kk vector and any
space group.

Example 1
07 at the point R, k = (w/a) (i+j+Kk) = (b, +b,+bs).
Here o is the full space group. The generators of the reduced set {G,(k)} are, from table 3,
{a} ={a,] 0}, {0} ={a5|0}, {c} ={a;]0}, {4} ={an|0} {i}={a|3a(i+j+k)}.
Since {a}, {0}, {c} and {d} have zero non-primitive translations they satisfy the point group
algebra given at the head of table A 11 for a, b, ¢ and d. We, therefore, immediately make
the identifications A— {a}, B — {b}, C— {C}, D — {d}, a=1. (9.1)
Products involving {i} are, however, affected by the non-primitive translation
v = %a(i+j+Kk). Using equation (4-7), table 1 and figure 1 we find
i = {a|*Ha |7} = {a laiv+7} = {oy [ =747} = {¢| 0} = {¢}.
Similarly, }Ha — felali+1} {a} i} = (@} ),
{18} = {ela(i+ K)o} i} = {6346},
{3 {3 = {31},
{iH{d} = {e|a(i+i+k)}Hd}Hi} = — {4}
Here the final expressions for the products are obtained from equation (6-4) with
k = (7/a) (i+j+K) (see footnote on p. 19).
Comparing equation (9-2) with the algebra listed for 4, B, C, D and I at the head of

table A 11, we see that no gauge transformation is required and that the identification of
the generators of {G,(k)} is completed by

I=G), f-—1. (9:3)
Finally, to obtain the complete identification shown in table 4, the products which label
the matrices in table A 11 are evaluated by means of the identifications (9-1) and (9-3) and
taking the non-primitive translation = into account.
For example

Al = {a}{i} = {a, |0}{a} | 7} = {ar | ay7} = {a, | a( —j —K) Haz | 7}
= {a; |~}
DI = {ayy| 0}{a] | v} = {aps| ans7} = {a, | a(—i—j—K)}Hazs | 7}
= —{ays |}
Here again the final expressions are obtained from equation (6-4) with
k = (n/a) i+j+Kk).

(9-2)
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22 A. CG. HURLEY

We note that the identification of each product of 4, B, ... is obtained by evaluating
a single product of elements of {G,(k)}. Allowing for the products needed to identify the
generators (equation (9-2)), we see that rather more than g, products are needed to obtain
the complete identification, where g, is the order of G (k). Thus when g, is large, far fewer
products are required than the g2 which would appear in a complete multiplication table.
It is therefore simpler to evaluate each product directly from table 1 and figure 1 (or
table 2 and figure 2). Of course in this example and, indeed, in most cases, many of the
products are trivial because of the zero non-primitive translations associated with some
elements.

However, if one wishes to check the results by projecting out basis functions (equation
(8-11)) and operating on these functions with all the elements of {G,(k)} (Slater 1965), it is
worthwhile constructing an explicit multiplication table. This procedure provides a very
thorough check of the representation matrices.

Using the full identification shown in table 4, we obtain directly from table A 11 three
representations; I, and I', of dimension 2, and I'; of dimension 6. From the arbitrary
factors +1 for D and [ listed at the head of table A 11 we obtain one new representation I’
which differs from I'; in that the sign of / is reversed throughout, that is the identifications
(9-1) and (9-3) are replaced by

A={a), B={}, C={¢, D={d}, I——{) (9-4)

Clearly this identification (9-4) is also consistent with the algebra listed for 4, B, C, D, I
withoa =1, f = —1.

Changing the sign of D in I'), and the signs of D and/or 7 in I'} and T'; leads to no new
representations, because the characters of these elements and their products all vanish. We
merely obtain similarity transforms of representations obtained previously.

Hence, finally, we obtain three two-dimensional and one six-dimensional representation.
Since 3 x 22+ 62 = 48 we know from equation (2-5) that this set of representationsis complete.

The identifications for the spin representations of " at the point R in 0% could be found
in a similar way by introducing appropriate minus signs from table 1 into equations (9-2)
and the equations satisfied by a, 4, ¢, d (table A 11). This is unnecessary, however, if the
identifications for the spin representations of the point group O, are available (table 4,
final column). The factors in the identification at R in O% with spin are just the products of
the factors without spin and the factors for the spin representations of O,. The values of the
parameters « and f, in this case « = — 1, f = — 1, are obtained in the same way.

Referring to table A 11, o == —1, f = —1 we find two four-dimensional representations
I', and I, listed explicitly. A third four-dimensional representation I'] is obtained by
reversing the sign of 7 in I'}. Again equation (2-5) shows that this set of representations is
complete (3 x 42 = 48).

Example 2
0j at the point X; K = (27/a) j = 4(b,+bs). From figure 4, Gy(k) = D,,. From table A 8
the generators of G(k) are

’
a=(4), = a b=m, 6 =a, c=m,=d.
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RAY REPRESENTATIONS OF POINT GROUPS 23

From the International tables (1953) the generators of {Gy(k)} are

@} ={asl7}, {0} ={a|7}, {} ={as]w} where = ={a(i+j+Kk).
The algebra of these generators of {G,(£)} is evaluated as in example 1, with the aid of
table 1, figure 1 and equation (6-4). We find

{a* = {4, |
0y =—1{ey,  bHar = —{a* {0}, - (95)
=1 dg=—a{3, @ =-0}
Comparing the algebra (9-5) with those listed at the head of table A 8 for 4, B and C, we
see that the minus signs must be removed from the equations

0 =—1{g, {H{a =—{a* {8

This is achieved, without spoiling the other relations, by the identifications

A =ifa}, B=i{b}, C={c}. (9-6)
From equations (9-5) and (9-6) we obtain the algebra
A* = E,
B?=FE, BA= A’B, (9°7)

C?=E, CA=-AC, CB =—BC,
which agrees with the case « = 1, f = —1, y = —1 listed explicitly in table A 8. Equations
(9-6) is an example of the gauge transformations that are sometimes necessary in identifying
the generators. All other cases which arise are equally simple.

Again the complete identification given in table 5 is obtained by evaluating the products
which label the matrix elements in table A 8.

From table A8,a =1,§ = —1,y = —1 we obtain two two-dimensional representations I';
and I, directly, and two others I'} and I'; by reversing the sign of B. These dimensionalities
satisfy equation (2-5) (4 x 22 = 16) showing that we have a complete set of representations.

The identification for the spin representations is given by the products of entries in
columns 10 and 12 of table 5. We find « = —1, f =—1, y =1 and (from table A 8) one
four-dimensional representation (4% = 16).

Example 3

Spin representations of the point group D,,. Here the factor system is obtained directly
from the bars in table 1. We find that the generators

(g} = {a6] 0}, {0} ={a2|0}, {7} ={a3]0}
of D,, with spin (Dj,) satisfy the algebrat
gt =—{¢,
0 = -, (g =—{a* {8}, (9-8)
=~ o - @, ) - -0}
Comparing equations (9-8) with table A 8, we make the identifications
A=ife), B=ifb), C=i{d,
T Since all translations are zero we might equally well write a* = —e, etc. The brackets are retained to

emphasize the similarity with the other examples, and to avoid confusion with the algebra listed in table A8
for a, b, c.
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24 A. C. HURLEY
which give the algebra
A* = —E, @=—1;
B*=E, BA= A43B, f=1; (9-9)

C?=E, CA=4C, CB= —BC, y=-—1.
The full identification is shown in table 5. From table A8, a =—1,f =1,y =—1 we

find one two-dimensional representation I}, directly. Three others I'}, I'{, I'{' are obtained
by reversing the signs of 4 and/or C (4 x 22 = 16).
These ray representations of D,, may be extended to vector representations (the addi-

tional representations) of the double group D,, , using equation (7-2).

Example 4

Spin representations of D,,.
From table A 5, figure 1, and table 1 (figure 2 and table 2 could also be used in this case),
we obtain the generators of D§,

- {ap = {as| 0} {8} = {an [ 0},
with the algebra {a}8 = {e},

0F = —{e}, 1 = {&° {0}
After making the identifications 4 = {a}, B =i{b},
we obtain the usual algebra of the point group D,
A = E, B*—=FE, BA= A°B.

The identification is completed (table 6) by evaluating the products which label the
matrices in table A 5. However, in a case such as this where we find the normal point group
algebra, that is a vector representation, the representation matrices are obtained not from
table A 5 but from the appropriate table of McWeeny (1963) (namely, his table (4-9), p. 98).
The expressions for the elements of tables 1 and 2 in McWeeny’s notation is evident from
figures 1 and 2.

When G, (k) is one of the point groups C,, C;, C,, C,, Cs, Sy, Cy, Cg, Cs;y Dy, Cs,, Cs;, not
appearing explicitly in tables A1 to A 11, we necessarily have the situation encountered
here; a gauge transformation associates the algebra of the generators of {G,(k)} with the
usual point-group algebra, and, apart from the gauge transformation we have ordinary
vector representations. All the above-mentioned point groups are cyclic, with the trivial
algebra a” = ¢, except for the isomorphic pair D; and Cj,. The geometrical identification
and algebra of the generators of these two groups are given in table A 0. Although these
groups have no non-trivial ray representations, this algebra is useful in determining the
appropriate gauge transformations.

Example 5
0}? at the point H; k = (2n/a) j = 3(b, —by+by)
Gy(k) = O,
From table 3 the generators of {G,(k)} are

{&} = {ay|3a(k)}, {8} = {as]da(i)}, {} ={a5]0}, {d}={apliali+i+k)}, {i}={a]0},
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RAY REPRESENTATIONS OF POINT GROUPS 25
whose algebra is found to be (table 1, figure 1, equation (6-4))

af? = {e;
{0} = {e}, {b}a} = {a}{b};
=g, {Ha =14, {38} =—{ag{6}{e}; (9-10)
4y = {e}, {d}{a} = {8}{d}, {dH{8} = {a{d}, {3} = {*{d};
i =1{ g = B =0 Gd= G -=-{d{E
Comparing equations (9-10) with table A 11 we make the identifications
A=—{a}, B=—{b}, C={}, D={d}, I={4}; a=1, f=—1.
The full identifications, with and without spin, are given in table 4. Without spin, we
find three two-dimensional representations I';, Iy, I'; and one six-dimensional representa-
tion I'y; with spin ¢ = —1, f = —1 and there are three four-dimensional representations
I', I'land T,
This final example is one of the most complex cases which arise for any space group.

Even here the identifications, both with and without spin, appear as the result of quite
brief calculations.

10. TmME REVERSAL, COMPATIBILITY RELATIONS AND SPIN ORBIT SPLITTING

In addition to the degeneracies which arise from spatial symmetry further degeneracies
may be produced by the invariance of the Hamiltonian under time reversal. These
degeneracies may also be determined from the ray representations both without and with
spin. Since this subject is fully covered in Koster’s (1957) review article, we will not discuss
it further, except to mention that for the determination of time reversal degeneracies the
characters of the representations are sufficient; one does not need the full matrices.

The characters are also sufficient to determine the compatibility relations between
representations at neighbouring points in the Brillouin zone and the splitting of bands under
the action of spin orbit coupling. If the latter problem is treated directly in terms of ray
representations, without invoking the double groups, attention must be paid to changes in
the factor system when Kronecker products are formed. (Cf. §2.)

For example, the Kronecker product of the ray representation ¢ = 1, f = —1, I'; of O,
with the standard spin representation of 0,, « = —1, f = 1, I'| gives a ray representation
with ¢« = —1, f# = —1. Since, in this case, the character of the Kronecker product is (from
table A 11) x(E) =12 all others zero,
we find from table A11 ¢ = —1, f = —1 the reduction

Nia=1,=-1)

xDe=—1,=1) =Ta=-LF=-1)+I] (@=-1,f=-1),
+Iy, (a=—-1,f=-1). (10-1)
In equation (10-1) I'j(a =—1, f = —1) is the representation obtained from the listed
representation I'; (¢ =—1,§ = —1) by reversing the sign of I throughout.
Equation (10-1) gives the splitting under spin-orbit coupling of the sixfold degenerate
state at the point R in O3 (table 4). The spin orbit coupling splits the original 6 x 2 = 12-fold
degeneracy into three fourfold degenerate states.

4 Vor. 260. A.
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26 A. C. HURLEY

11. SLATER’S CONVENTIONS
Slater (1965) has recently derived matrices for the irreducible representations of a number
of space groups using a set of conventions which agree with those used here and by Koster
(1957) except at one point. In Slater’s work equation (8-1) is replaced by the equation

L f(x) = f({a| t}x). (11-1)
The natural mapping L,y > {a|t} (11-2)

no longer provides an isomorphism between the group G, of linear operators L,;, and the
space group G with elements {a | t}, as was the case in § 8. This causes no difficulty in Slater’s
work since he deals throughout with the group G, rather than with the space group G;
for example the product rule is derived, not by transforming a general vector x with
{b|s}, {a|t} (cf. §4), but by operating successively with L, L,y on a general function
f(x). Consequently, in the Slater theory, equation (4-3) is replaced by

L Livwy = Lipaiotsr (11-3)

Again Slater’s ‘multiplication table for successive operations on a plane wave’, which
corresponds to the factor system (6-4) of a ray representation, is obtained by operating
successively with Ly, L, on a plane wave

f(x) = exp (i(k+K,). x). (11-4)

Since Slater’s work 1s fully described elsewhere (Slater 1965) we shall not consider it
further except to point out the obvious relation between his representation matrices and
those obtained here. To describe this relationship we introduce groups 7;, #;, Gy, Go. (k)
which are related to 77, A, G, and G,(k) in the same way as G, is related to G.

The mapping Ly {a |t} (11-5)
now provides the isomorphisms

G.2G, 7,27, A=A, Gy=Gy Gylk)=Gyk). (11-6)

Consequently, if the mapping Ly —D (L) (11-7)

provides an irreducible matrix representation of the group G, (or7;, A5, Gy, Gy, (k)), then
the mapping (¢8> D({a|8) = DLyy) = D™ (L) (119)

provides an irreducible matrix representation of the group G (or 7, ¥, G, G,(k)).

Hence to obtain matrix representations of G (or.7, etc.) from those of Gy, and vice versa,
one must either relabel the matrices according to the mapping (11-5) or take inverses of the
representation matrices.

If we express equation (8-6) using Slater’s conventions and the mappings (11-5) and

11-8) we obtain .
(118) i = 3'; D (Liyy-1) Lipig-1 ¥
L
= > D& (L) Ly ¥
‘xfz

so that the same basis functions ¢{® serve for the representation (11-7) of G, (or #;) and the
representation (11-8) of G (or ¢7).
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RAY REPRESENTATIONS OF POINT GROUPS 27

The tables of the ray representations of the point groups given in the appendix to this
paper are quite independent of the convention adopted in equation (ll'f); they may be
used in conjunction with Slater’s work, the factor system of the ray representation being
provided by Slater’s ‘multiplication table for successive operations on a plane wave’.
Indeed a number of the tables in the appendix have been checked against Slater’s results
in this way. The spin representations may also be incorporated in the Slater theory simply
by introducing appropriate minus signs from tables 1 and 2. If tables 1 and 2 are used in
conjunction with Slater’s conventions, it must be remembered that it is the mapping (11-5)
(with t = 0) which provides an isomorphism between Gy, and G, and no¢ the mapping
(11-2).%

12. SuMMARY

The steps required to derive all the irreducible representations of a given space group G
may be summarized as follows.

(i) If G is symmorphic equation (6-7) and the tables of McWeeny (1963) give the
irreducible representations of & for all k vectors within or on the surface of the Brillouin
zone. The additional representations of the double groups 2 are also given by equation
(6-7), where I'(3) is now an additional representation of the double point group G,(k).
The required additional representation of the 32 double-point groups may either be
generated from the basis functions listed by Koster e al. (1963) or derived by the method of
ray representations (cf. §9, examples 3 and 4).

(ii) If G is non-symmorphic the irreducible representations of # and % for k vectors
within the Brillouin zone are still given by equation (6-7). For Kk vectors on the surface of
the Brillouin zone we proceed as follows.

(iii) Determine all k vectors equivalent to the one under consideration and deduce Gy (k).

(iv) From tables A0 to A1l obtain the generators a,b, ..., of Gy(k) and identify these
with a,, a,, ... of table 1 or 4,, b,, ... of table 2.

(v) Incorporate minimal non-primitive translations into 4, b, ... to obtain the generators
{a}, {0}, ... of the reduced set {G,(k)}. These minimal non-primitive translations may be
obtained from the Infernational tables (1953).

(vi) Evaluate the algebra of the generators of {G,(k)} by the use of equations (4:7), (4-8),
(6-4), table 1 (or 2) and figure 1 (or 2).

(vii) Identify this algebra either with the usual point-group algebra or with an algebra
listed explicitly in tables A1 to A1l for 4, B, ..., a gauge transformation being used if
necessary. This provides an identification of the generators {a}, {¢}, ... of {Gy(k)} with the
labels 4, B, ... of the matrices.

(viii) Extend the identification to all elements of {G,(k)}.

(ix) The identification for the spin representations of #" is the product of the identifica-
tions for # without spin and for the spin representations of G (k).

(x) If at step (vii) or (ix) the usual point-group algebra was obtained, read off the
matrices from the tables of McWeeny (1963), if not use the appropriate table A1... A11.
In order to obtain all the representations one must use the arbitrary factors listed for

T It appears to the author that Slater’s treatment of the cubic point groups is inconsistent with his
treatment of the non-cubic point groups and space groups. In particular figure A12-4 and equations
A12-67 of Slater (1963) appear to follow the Wigner convention (8:1) (with t = 0) rather than (11-1).

4~2
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28 A. C. HURLEY
A4,B, .... Equation (2-5) provides a test for the completeness of a set of irreducible
representations.

(xi) The ray representations obtained at step (x) may be extended to full matrix
representations of #” and G, or ;and G, using equations (7-1), (7-2) and theorems 2 and 4.
However, for many purposes, including the construction of basis functions, these extensions
are unnecessary ; the matrices of the ray representations are sufficient (equation (8-11)).

The derivation of the matrices for all irreducible representations of all space groups and
double-space groups by the method of ray representations is a much less formidable task
than is suggested by a quick glance at the above (xi) step programme. Nearly all representa-
tions of nearly all space groups may be written down immediately from McWeeny’s (1963)
tables or appear as the result of quite trivial manipulations. There remain relatively few
more complex cases; k vectors of high symmetry on the surface of the Brillouin zone. Even
here the required identifications are made quite easily and quickly as shown in § 9. Indeed
table 4, §9, gives explicit identifications for all the most complex cases where G, (k) = O,,.

13. REeraTioN TO KOVALEV’S WORK

In this paper the derivation of the space group representations has been based on the
fact that the matrices D({}) which represent the reduced set {G,(k)} provide a ray repre-
sentation of the point group G, (k) with the factor system.

A(b;y b;) = exp (—ik.R,(2,7)), (13-1)

where R, (4,5) = b;v(b;) +v(b;) —v(b;b;). (13-2)
If we apply the gauge transformation

D({b}) = D({b;| v(6)}) = exp (—ik.v(8,)) D(b) (13-3)

to the matrices D({4;}), the transformation of the factor system is given by the equation
(cf. equation (2-6))

M b;) = exp?}i}—)i(k. (15('53(3%21)).))) As 8;)- (13:4)

We may use equations (13-1) and (13-2) to reduce /l(bl, b;) to the two equivalent forms
b, ;) = exp (—ik. (b,v(8) = V(b)) (133)

=exp (—i(b; 'k—K). v(b;)). (13-6)

The matrices ﬁ(bi) of equation (13-3), or their similarity transforms, are those tabulated
by Kovalev (1961). They provide a ray representation of G, (k) with the factor system (13-5),
(13-6), which is projective equivalent to the ray representation D({b,)}).

Kovalev’s factor system (13-5), (13-6) is somewhat simpler than that given by (13-1) and
(13-2); it involves only one non-primitive translation instead of three and gives fewer
non-trivial factors. Indeed, from the alternative expressions (13-5) and (13-6) we see that

Ay, b,) =

i 7]
whenever: (i) v(4;) = 0, or (ii) the rotation 4, leaves v(b;) invariant, or (iii) the rotation
bi' (or b;) leaves k invariant, that is does not transform k into an equivalent vector of
reciprocal space, or (iv) the wave vector k is orthogonal to the vector 4,v(b;) —v(b;).
The matrices (b) have a useful property of invariance which is not shared by the
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D({5;}). If the minimal non-primitive translation v(b;) associated with &, in the reduced set
{Gy(k)} is altered by the addition of the primitive translation R,
v(b,) —>v(b,) +R1,
the associated transformation of the matrix D({5,;}) is
D({b}) > exp (—ik.R,) D(i43),
whereas the matrix D(5,) is invariant
D(s) D).

These properties of the factor system (13-5), (13-6) and the matrices make it practicable
to tabulate the matrices D(b,), and the corresponding matrices for the spin representations,
explicitly for all space groups and all kK vectors. This is what Kovalev (1961) has done; his
tables are still very extensive, of course, and occupy some 150 pages. The methods described
in §9 enable one to obtain the same results almost as easily from the much briefer tables
contained in the appendix to this paper, and tables of the vector representations of the
point groups (McWeeny 1963).

In order to construct projection operators from the matrices D(b) we must restore the
factor removed by the gauge transformation (13-3). The expression (8:11) for the basis

function ¢if? is then  gio) — 5 exp (ik. v(5)) Dig (8) (b v(6)} e (13-7)
b

As is the case with Slater’s (1965) conventions, the tables A1 to A11 may be used to
derive Kovalev’s matrices f)(ai) using the factor system (13-5). The identifications are
obtained somewhat more simply using this factor system, but this gain is nearly balanced
by the labour of restoring the factors expik. v(4) in the gauge transformation (13-3). The
principal advantage of the gauge transformation (13-3) lies in the condensation of explicit
tables of matrix elements.

The author is indebted to Professor G.F.Koster for an introduction to the theory of
space groups and to Professor J.C.Slater and other members of the Solid State and
Molecular Theory Group, Massachusetts Institute of Technology, for the stimulus provided
by their Quarterly Progress Reports (unpublished).
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30 A. CG. HURLEY

ApprENDIX. TABLES A 0 TO A1l

Tables A0 ... A11 give the following information for each of the non-cyclic point groups:

(i) A set of generators a, b, ..., and their geometric interpretation; (z) denotes an n-fold
rotation axis, (n) an n-fold rotation-reflexion axis, m a mirror plane and ¢ the inversion.

(ii) The algebra satisfied by the generators. Apart from relations of the form a* = ¢ (¢ the
unit element) specifying the order of each generator, the algebraic relations given are just
sufficient to permit the re-expression of any product of the generators in alphabetical order;
all distinct products of the generators in alphabetical order, and ¢ itself, give the elements
of the point group.

(ii1) The possible non-associated algebras satisfied by the matrices 4, B, ..., of a ray
representation of the point group (except for tables A0, where all possible algebras are
associated with the usual point-group algebra).

(iv) Arbitrary factors for the generators 4, B, ... (cf. (v)).

(v) The full matrices of all non-trivial, irreducible, ray representations of the point
group. These matrices are labelled by products of the matrices 4, B, ..., representing the
generators. Only some of the ray representations appear explicitly in the tables. All others
are obtained from these by using the listed arbitrary factors for the generators. For example,
if an arbitrary factor ¢ appears for 4, 4 may be replaced by ¢4 in all the products of
generators which label the matrices. If the character of any element is changed by this
replacement we have a new representation; otherwise we have a similarity transform of
the original representation. Equation (2-5) provides a check which indicates when all
inequivalent, irreducible, ray representations with the appropriate factor system have been
obtained.

TaBLE A 0
i 'D3 ' CSU
a = (3) ’ a = (3)
=(2)Lla . b =mja
ad =e i A3 = E
b*> = e¢; ba = da®b | B*=E, BA= A2B
TaBLE A 1
Cy, ) ‘CZh . ‘i D,
a = (2) a=(2) a = (2)
b = mja b=mla b=(2) La
a® =e A2 =E; a=+1
b* =e; ba = ab B2 =E; BA = adB
arbitrary factors + 1 for 4 and B.
«=—-1 | E A B | 4B
Ty 1 0 1 0
D ol 1 o1
(T 0 1 0 (-1
D2z 1| o |-11]0
x(T) 2 0 0
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TaBLE A 2
Cyy | D, ] Dy,
a= (4) a= (4) a= (4)
b = mja b=(2)1la b=(2)1la
at = ¢ A* = aE; a=+1
b =¢; ba = a% B2 = E; BA = A®B

arbitrary factors + 1 for 4 and B

a=-1 | E | A | £ | £ B | 4B | 4B | 4B
(T 1 u 0 u 0 u |—1 |—u
(TD)a 0 |—u 1 u 1 u 0 u
(I'1s 0 v =1 | —u 1 u 0 u
(') 2 1 u 0 u 0 |—u 1 u
x(T) 2 |iy2| 0 [iy2| O 0 0 0
u = i/y2.
TaBLE A 3
i Can
a = (4) at=¢ At =F; a =41
b=mla| b®=e; ba=ab B2 =FE; BA = adB

arbitrary factors +1, +ifor 4; +1 for B

wa=—1 | E | A4 | 4] 4| B |4B[4B]| 4B
(T 111|100 o]lo
(T 000 0] 1 -1 |1]-1
()1 olololo | 1| 1/]1]1
(T 1 -1 | 1 =100 ]0]o0
x(T') 20,2 |0]0 0|00

31
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32 A. C. HURLEY
TABLE A 4
D ! o ==+1
a=m at=e A2 =E B =x+1
b=mla b2 =¢; ba = ab B?=FE; BA=vy4B y =+1
c=mla, |b 2 =¢e; ca=ac; cb=bc C?=E; CA = pAC; CB = aBC
arbitrary factors + 1 for 4, B, and C
= a=—1,8=1y=1 E | A| B | C | 4B | BC| CA | ABC
Sy (T 1|1 10|10 0/, 0
Zras (T'))o 00| 0|1 |0 |-1 1 -1
(T')) 1 ol oo | 101 1 1
@ (1)) 99 1 1 (-1 ] 0 |=1 0100
5 x(T) 21 2]01]0 ;010 010
§>_4 a=1p=—-1v=1
OH Ty, 111 01 0/ 0 0
- |
=~ Do 0,0 0 10 1 1 -1
EU (T 0,0 01 0 1 |-1]1
[_O (T))2 1 -1 [ 110 -1 0100
w
22 x(T) 2 i 0 | 2 0 0 0 0 0
Z
gg a=18=17y=-1
3'5“ (T4, 1 1.0 1.0 "0 1]o0
85’0 Dar 00 10 -1 1|0 |-1
=% (T4 ol o1 01 10 1
=
T s 1 -1 ,0 1,00 -1]0
x(T) 2 0 0 2 0 00 |o0
a=1p==1y=-1
(T, 1 |0 | 1 1 0] 101! o0
(Mo o1 0lo0o 1|0 -1 1
2 (T'ra 0 1 0 0 -1 0 1 1
& (T'}) 5 1,0 |=1 =101/ 1] 010
‘ x(T') 210 0 010 | 2 0
ZT": a:-—l,ﬂ:l,’y::—]_
< " (T 11 lol1lo0olo 1|0
4% a1 0,0 1 0 -1 1 0 -1
i (C)ra 0 0 1 0 1 -1 0 |—1
2 E x(I') 2/ 0/0]0 0 0 2 0
L”G a=—-1pf==1Ly=1
L O Ty 111 1701 0100
= (D))o 00 0| 1|0 =1 1 1
5"2 (M1 o001 0|1 |-1 1
20 D22 1 =1 =1 701 1,010 0
[
325 x(T) 2 0 0 0 2 0 0 0
§‘£ a=—1Lf==1v=~1
EE (T 1170 0 01 o 1
1)21 0 0 1 1 -1 0 1 0
(I'D1a 0 0 1 -1 1 0 1 0
() gn 1 -1 0 0 0 -1 0 1
x(Ty) 2 0/ 0 0 0 0 0|2
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TABLE A 5
Ce, Dy Dy, Dy, -
a = (6) a = (6) a = (6) a=(3)
b = mja b=(2)1a b = mjja b = mja
a6 = ¢ A6 = E o = i 1
b?2 = e¢; ba = a%b B? = E; BA = ad’B
arbitrary factors +1 for 4 and B »
o =—1 E | A |42 | 43| 44| 45| B | AB | A2B | A3B | A*B | 4B
T 1 11 /111|000 0] o0]o0
T 0000 0/|0 /|1 |=1 |1 =11/ =1
(T)1z olojlo o oo 1|1 1|1 1]1
(T2 1 -1 |1 /=1 1 /=110 |00 o|olo
x(T") 2 /0|20 2]0/l0o|o0o]0|lo]|o]o0
(To)1y 1 w w? 1 0 | w? 0 0 0 0 0 0
(T'y) s 0 0 0 0 0 0 1 |—0?| 0o |-1 | & |—w
(Ty) 1 0o lo | oo 0]| 0|1 e |1 o]aw
(Ty) g0 1 | —e?| 0o |-1 | —o 0 0 0 0 0 0
x(T'y) 2 |iy3|=1 | 0 |-1 |-iy3) 0 [ 0 | 0 | 0| 0] 0
w = ebni
TaBLE A 6
Cen
a = (6) a® =e AS=E; a=4+1
b=mla b =¢; ba=ab B2 = E; BA = aAB
Arbitrary factors 1, 5§ = €37, 92, 43, 5%, 95 for 4; +1 for B.
o =—1 E | 4 | A2 | A3 | A4* | 4> | B | AB | A’B| A3B| A*B| A°B
Ty 111|111 ]ofo|lololol]|o
Dar 0o lo oo | 0|1 |=1]|1/|1]1 |-
(T 1 ololololo|o| 1|1 |l1]|1]|1]|1
Uao 1 (=1 1 (-1 1 |=1 0 0 0 0 0 0
x(T) 2 0 2 0 2 0 0 0 0 0 0 0
TaBLE A 7
T and T,
a= (2) a’ =e A2 =aE; a=+1
b= (2)La b2 =e; ba = ab B? = qF; BA = aAB
¢ = (3)atb5°toaand b ¢ =¢; c¢a=bc; cb= abe (3 =E; CA = BC;
i = inversion (only 12 =¢; la=ai; 1b = bi; CB = ABC
for 7)) i = ci I’ = E; JA = AI;, IB = BI
IC =cCI
arbitrary factors 1, o = ¥, w? for C; +1 for /
o =-1 E A4 B AB c AC | BC | ABC | C? | AC? | BC? | ABC?
(for T, only) | EI Al BI | ABI | CI | ACI | BCI | ABCI| C%I | AC2I | BC?I |ABC2I
'y 1 a a a w? | aw?| aw?® ! aw? » aw aw aw
(') 0 b | bw? bw 0| bw? bw b 0 bw b| bw?
(T)1s 0 b bo | bw? 0 bw | bw? b 0| bw? b 2]
Voo 1 —a —a —a ©| —aw | —aw | —aw w? | —aw? | —aw? |— aw?
x(T') 2 0 0 0ol —1 1 1 1] -1 —1] —-1] —1
w=¢el" 4= /43, b = 1J%
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BA = aAB

c4
DA
I4

aE;
E;
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Arb_i-trary factors+1 for L

A = aFE

B2
Ca
D2
I2

=di

id

de = ¢d
ic = ¢i3

cb = abe

db = ad;

ib = bi;

ab

ca = be;
da = bd;

ia = ai;

ba

a?=¢e
b = ¢
= ¢
d? = ¢
2 =¢;

Oy

1 = (2) // external bisector of a and b

¢ = (3) at 55°to g and b
i = inversion

1= (2)

h=(2) La
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